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Abstract. By differential Scanning Calorimetry (DSC), at low heating rate and using a technique of frac-
tionation, we have measured the equilibrium DSC signal (heat flow) J0

q of two families of porous glass
saturated with water. The shape of the DSC peak obtained by these techniques is dependent on the sizes
distribution of the pores. For porous glass with large pore size distribution, obtained by sol-gel technol-
ogy, we show that in the domain of ice melting, the heat flow Jq is related to the melting temperature
depression of the solvent, ∆Tm , by the scaling law: J0

q ∼ ∆T
−(1+D)
m . We suggest that the exponent D is

of the order of the fractal dimension of the backbone of the pore network and we discuss the influence of
the variation of the melting enthalpy with the temperature on the value of this exponent. Similar D values
were obtained from small angle neutron scattering and electronic energy transfer measurements on similar
porous glass. The proposed scaling law is explained if one assumes that the pore size distribution is self
similar. In porous glass obtained from mesomorphic copolymers, the pore size distribution is very sharp
and therefore this law is not observed. One concludes that DSC, at low heating rate (q ≤ 2 ◦C/min) is the
most rapid and less expensive method for determining the pore distribution and the fractal exponent of a
porous material.

PACS. 81.05.Rm Porous materials; granular materials – 61.43.Hv Fractals; macroscopic aggregates
(including diffusion-limited aggregates)

1 Introduction

The structural and dynamic properties of liquids trapped
within the confined geometry of a porous solid have been
the subject of considerable interest for many years. In
all these porous materials the most studied liquid is wa-
ter [1–4]. The effect of restricted geometry on the melt-
ing and freezing properties of cryogenic fluids [5], wa-
ter [4,6], organic materials [6,7] and some metals [8–12]
in porous glasses have been extensively studied by various
experimental techniques: in particular calorimetry, acous-
tic technique, NMR and Wide angles X rays scattering
(WAXS). In these materials filled with wetting (e.g. wa-
ter) and non wetting (e.g. mercury) liquids one finds that
the freezing and melting transitions are broadened and
become hysteretic [4–12]. The broadening of the freez-
ing thermograms in these materials, has been studied by
different techniques: thermoporosimetry [4,6], gas desorp-
tion [13], Thermo Stimulated Current [14,15] (TSC) and
NMR [13] and has been interpreted in term of the distri-
bution of pore sizes. In most of the published works on
porous materials a width of the pore size distribution is
given but without giving a detailed analysis of the form
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of the distribution. Only a few authors have studied the
fractal dimension of porous glass using various techniques
but never by calorimetry.

Using small angle neutron scattering, with D2O/H2O
water mixtures, Li et al. [16] demonstrated that the struc-
ture of Vycor glass can be visualised as a percolated net-
work of pores, this network being somewhat reminiscent
of Silica Aerogels, or branching polymers (both showing
fractal geometry). It has been shown that below the peak
at the scattering angle ϑm = 0.025 Å−1 observed by neu-
tron scattering, the scattering intensity I(ϑ) follows the
scaling law I(ϑ) ∼ ϑ−D, with the fractal volume dimen-
sion D = 1.75. In Silica sol-gel X-ray scattering at small
angle [17] (SAXS) and NMR [18] studies lead to fractal
dimension of the order of 2.2. Others porous systems have
been studied and the fractal (volume) dimension lies be-
tween 2 and 3 [19].

Since the Thomson equation establish a direct rela-
tion between the temperature and the size scales, one can
ask then if the melting thermograms of confined liquids
in porous materials can give information on the pore size
distribution, and eventually it’s self similarity. The aim of
this note is to compare by Differential Scanning Calorime-
try (DSC) two different families of porous SiO2 glass
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(regular and irregular, with respectively narrow and large
distribution of pore size) of similar mean pore size but
of different size distribution. In the particular case of a
self similar distribution (for porous glass from a sol-gel
transition), one shows that the fractal dimension of the
pore network can be deduced from the equilibrium DSC
thermograms.

2 Materials

The first kind of material, called P123AC, is a SiO2

glass templated by Pluronic triblock copolymers and us-
ing tetraethylorthosilicate as the silica source, the synthe-
sis and morphology of this glass with cylindrical pores (in
hexagonal array) has been given in references [21]. The
diameter measured by Nitrogen Adsorption Desorption
Isotherm is dBJH = 4 nm and by X-ray dXR = 5 nm and
7 nm (the dXR value depending on the adopted model for
the density profile between the pore and the matrix).

The second kind of materials is two Gelsil SiO2 glasses
(from Geltech) named G25 and G50. These materials have
been obtained using sol-gel technology which gives a broad
distribution of pore dimension. The mean pore size dimen-
sion of these two materials, given by Geltech, are respec-
tively 2.5 and 5 nm, porosity 48 and 63% and internal
surface areas [15], 610 and 580 m2/g. These porous glass
have been studied by several authors [15,22,24].

3 Experimental results

DSC measurements

In classical DSC, it is well known that the signal, the heat
flow (JQ = dH/dt) depends on the thermal conductivity
of the sample, its mass m, the thermal contact sample -
pan, and the heating and cooling rate q = dT/dt [25].
These thermal effects explains the broadening of the en-
thalpy peak of pure compounds (ice) when the heating
rate q increases. The important difference between bulk
water and confined water is that the width of the melt-
ing of ice in porous glass does not extrapolates to zero for
q = 0. This fact leads most of the authors [4–12] to inter-
pret the observed width in different materials (polymer,
porous glass) as being due to a distribution of crystallite
sizes of the solvent. The major problem in calorimetric
measurements, is the following: how slow must the heat-
ing rate be, in order to obtain a signal J0

Q/(mq) which is
independent on the heating rate q, the mass of the sample
and the thermal contacts.

The two kinds of porous glass have been saturated
with water and analysed by a DSC Mettler instrument
(DSC30). Typical heating thermograms, JQ(T ), at low
heating rate q for the two types of glass are given in Fig-
ures 1 and 2a. The mass of water absorbed in the porous
glass is about 5 mg. The DSC instrument has been cal-
ibrated at q = 0.5 ◦C/min with pure water. One recall
here that, for high heating rate, the temperature Tm cor-
responding to the maximum of the melting peak and the
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Fig. 1. Melting endhotherms of ice in P123AC porous glass:
The heat flow JQ vs. temperature heating rate q = 0.2, 0.5
and 2 ◦C/min. In the insert, width W1/2 at half height of the
melting peak of pure water and of water in these porous glass
versus the scanning rate.

width of the melting peak increases with the amount of
water in the DSC pan (typically the half width at half
height is W1/2 ∼ 3 ◦C for a mass of 8 mg). This is due to
the finite thermal conductivity of the material and of the
DSC pan.

Ordered P123AC porous glass

In the insert of Figure 1, we report the variation of the
width W1/2 at the half height of the melting peak of pure
water and water in P123AC glass as function of the heat-
ing rate for the same mass (5 mg) of materials in the DSC
pan. For q ≤ 2 ◦C/min, one concludes that the width
W1/2 of the melting peak for the glass is not dependent
on the heating rate. Similar experiments with different
mass show that the width is also independent on the mass
of water (for these heating rates). The pore size is given
by the Thomson equation:

Tm = T 0
m

(
1 − 2γsl

∆H0
m

ν
1
r

)
(1)

where T 0
m is the melting temperature of an ice crystal of

infinite dimension, 273 K, γsl is the average interfacial ten-
sion of the crystal, γsl ∼ 40× 10−3 N/m. ∆H0

m = 334 j/g
is the specific melting heat. ν is the solid specific volume
ν−1 = ρ = 0.971 g/cm3 and r is the crystal radius. The
maximum of the DSC peak is situated at Tm = −22 ◦C,
which gives a mean pore diameter of 62 Å in good agree-
ment with X-rays measurements.

The important point to remark, in Figure 1, is that
for the three heating rates, q = 0.2, 0.5, 1 ◦C/min, the
profiles of the thermograms are the same and can be fitted



R. Neffati and J. Rault: Pore size distribution in porous glass 207

-80 -60 -40 -20 0 20

P123

G50

G25

J
Q
 / ua

T  °C

T
on

T
off

(a)

0,01

0,1

1

10

10 100

G 25
G 50

D
25

 =  1 .7 1

D
50

 = 1.51

J
Q

/ mw

���� T
m

   ( K  )

(b)

Fig. 2. Melting endhotherm of water in Gelsill glass, G25 and
G50 and P123AC (for comparison). (a) Heat flow JQ vs. tem-
perature, heating rate q = 2 ◦C/min, Tend and Ton are the
temperatures corresponding to the beginning and the end of
the DSC peak for the G50 glass. (b) Heat flow JQ versus the
melting shift ∆Tm, on logarithmic scales.

by the same Gaussian curve Jq ≈ exp−(T − 22)2/2σ2

with σ = 0.7 ◦C, the correlation factor is R = 0.98, same
fit is obtained for q = 2 ◦C/min. In such materials the
width of the melting peak for q < 2 ◦C/min is an intrinsic
parameter of the material and gives an indication of the
distribution of the pore sizes.

From the DSC technique we conclude that the process
of pore formation via the mesomorphic template leads to
a very sharp Gaussian pore size distribution. Such a con-
clusion cannot be deduced from X-ray analysis because
this last technique necessitates a model of the structure
and because the SAXS spectra are widened by the disori-
entation of the glass grains which contain oriented cylin-

drical pores. These results show the great advantage of
the calorimetric technique at low heating rate compared
to SAXS. We have also demonstrated that calorimetry
at heating rate higher than 2 ◦C/min (as usually done),
gives wrong results concerning the mean pore dimension
and the pore size distribution.

Disordered Gelsill porous glass

Classical DSC method. Typical DSC thermograms at
q = 2 ◦C are given in Figure 2a; as the signal is broader
(15 ◦C) than for the ordered porous glass (3 ◦C), the
ratio signal/noise becomes too small at the lower heat-
ing rates and impedes the preceding analysis. The asym-
metrical thermograms cannot be fitted by a Gaussian. In
Figure 2b one shows that in a large domain of temper-
ature (50 ◦C), between the beginning (Ton) and the end
(Tend) of the melting, the heat flow has the scaling form,
JQ ∼ (∆Tm)D∗

. Where ∆Tm = T 0
m − Tm is the shift of

the melting temperature (T 0
m = 273 K). In these porous

glass the melting is characterized by the temperatures Ton,
Tend and by the scaling exponents D∗ = 2.51 and 2.71
(±0.08) for samples G50 and G25 respectively, measured
at the heating rate q = 2 ◦C/min. The paramount ques-
tion is to verify these properties at lower heating rates.
This is rather impossible with the classical DSC, because
the signal to noise ratio become too small. It becomes
then important to verify that the thermograms obtained
at 2 ◦C/min is an equilibrium thermogram, as was the
case for the preceding porous glass P123. This will be ver-
ified hereafter by the new DSC method called fractionated
DSC described in reference [26].

Fractionated DSC.

To have thermodynamic thermograms of the melting of
ice in porous glass (independent of the DSC drawbacks:
scanning rate and delay times), the sample is submitted
to thermal cycles involving 4 stages. The material is first
crystallised during a DSC scan at 5 ◦C/min (stage 1). The
total enthalpy of crystallisation is ∆Hc. Then the sample
is reheated (stage 2) and annealed at temperature Ta in
the melting region between Ton and Tend during a time ta
(1′, 5′, 20′) (stage 3). During a second cooling at 5 ◦C/min
(stage 4) the thermogram is registrated. The subtraction
with the base line gives the enthalpy of crystallisation
∆Hc(Ta) of water which was previously obtained by the
partial melting of ice at Ta, during stage 2. This sequence
is repeated for different temperatures of annealing.

By scanning the domain of melting by this method,
one obtains a discrete thermogram ∆Hc(T, ta) which is
an equilibrium thermograms if ∆Hc is independent of
the annealing time ta. The proportion in mass of crys-
tallites which melt below T , during stage 2 and 3, is then
x(T ) = ∆Hc(T )/∆Ht

c; ∆H
t
c being the total enthalpy of

crystallisation of the water measured during stage 1. In
Figure 3a one reports this proportion for sample G25.
Derivation gives the thermodynamical thermogram (at
equilibrium) J∗

Q ≈ ẋ(T ) ≈ d∆H/dT . We note that the
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curves x(T ), for all the samples analysed, do not depend
on the annealing time ta > 1′. Therefore we state that
J∗

Q ≈ ẋ(T ) represents the true thermodynamic thermo-
gram of water in Gelsill glass. In Figure 3b we compare
the flow rates J∗

Q and JQ of the G25 material as func-
tion of the supercooling ∆T in logarithm scales, obtained
by the direct DSC method (at 2 and 10 ◦C/min) and by
the fractionated DSC (curve F). The important point to
note is that the classical DSC method at 2 ◦C/min gives
thermograms very similar to that obtained by the frac-
tionated method; the peaks of the thermograms are sit-
uated at the same temperature. The temperatures Tend

are somewhat different, but in our opinion this is due to
the lack of accuracy at the end of the ice melting. These
two methods over a large domain of temperature (50 ◦C)
below Tm(∼ −20 ◦C) lead to the same scaling exponent
D∗ = 2.7. Most of the DSC thermograms published in the
literature have been obtained at 10 and 20 ◦C/min and are
therefore not true equilibrium thermograms; we conclude
that by calorimetry with such high heating rate one cannot
measure with accuracy the distribution of the pore distri-
bution. The interest of the fractionated method is that
the equivalent heat flow rate J∗

Q is much more important
and accurate than the classical DSC flow rate JQ, since it
gives true temperatures (no delay times). In the stage 4 of
this method, the cooling rate is arbitrarily 5 ◦C/min. The
use of a more rapid cooling would increases the DSC signal
but does not change conspicuously the form of the equilib-
rium thermogram. Higher cooling rates in stage 4 should
be used for porous systems containing small amount of
crystallizing solvent. The drawback of this new method
is that for describing a thermogram containing n points,
the time of experiment is of the 4nt, t being the time of
experiment by classical DSC (20′).

In conclusion, the above experiments on ordered and
disordered porous glass shows that DSC measurements
at heating rate q = 2 ◦C/min (or less) gives true infor-
mation on the pore distribution of the porous structure
(mean dimension and form of the distribution). Moreover
the experimental method is relatively rapid (25 min per
sample).

4 The origin of the scaling law

The Thomson equation (Eq. (1)) can be put in the simple
form:

tm =
aT

r
(2)

where (T 0
m − Tm)/T 0

m is the reduced melting temperature
and aT = 2γsl

∆Hm
ν is a length called the Thomson length.

Typically aT = 2.5 Å for water. In most of the published
works the melting enthalpy ∆Hm is temperature indepen-
dent. Brun [6] has shown that the crystallizing enthalpy
∆Hc of water in porous silica and alumina decreases with
the freezing temperature Tc, according to the experimen-
tal relation:

∆Hc(Tc) = 332− 7.43∆Tc + 5.56(∆Tc)2. (3a)

(a)

(b)

Fig. 3. (a) DSC fractionation of G25; proportion x(T ) =
∆Hc/∆Ht

c of ice molten at annealing temperature Ta = T ;
∆Hc is measured by the recrystallization procedure (stage 4
in the text). By derivation the equilibrium thermogram J∗

Q(T )
is obtained. (b) Comparison between classical DSC at 10 and
2 ◦C/min and the fractionated DSC method (curve F). Heat
flow versus supercooling ∆T on logarithmic scales. For more
clarity the curves are shifted arbitrarily vertically. The frac-
tal exponents D deduced from the slopes of the two curves F
and 2 ◦C/min are found to be nearly equal. The lines are the
fits from equation (6) (see Tab. 1) assuming that the melting
enthalpy is given by equation (3b) with TK = −120 ◦C.

In the domain 25 K < ∆Tc = 273−Tc < 0 K the variation
are linear d∆Hc/dT ∼ 6 J/g K, and there is no reason to
postulate that the variations of ∆Hc(Tc) and ∆Hm(Tm)
are different.

When the melting depression temperature becomes
important (T 0

m − Tm) > 10 ◦C, Hofmann [27] and Gelb
et al. [28] have proposed that ∆Hm varies linearly with
the temperature. In fact one can postulate that the melt-
ing enthalpy is given by the following linear relation:

∆H(Tm) = ∆H0
m

(
Tm − TK

T 0
m − TK

)
= ∆H0

m

(
1 − tm

tK

)
(3b)

where TK is the Kauzmann temperature [29], a charac-
teristic temperature of the liquid of the order T 0

m/2. In
most of the glass forming materials TK coincides with the
T0 temperature where the relaxation time extrapolates to
infinite. It must be recalled here that the differences in
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specific volume and in enthalpy between the crystal and
the liquid phases decrease linearly when the temperature
decreases, and extrapolates to zero at TK. For water the
temperature TK is not known accurately, but this will have
no influence on ours conclusions.

To explain the value of the fractal dimension one as-
sumes that the pore size distribution P (r) follows, under
a certain size, the power law:

P (r) =
dx
dr

∼ rD−1 (4a)

where dx is the fraction of crystallite having size between
r and r + dr and which melt between Tm and Tm + dTm.
This assumption is suggested by the fractal character of
these porous systems obtained by sol-gel transition. The
total volume of pore V (r) obtained by integration is then
given by the classical law

V (r) ∼ rD (4b)

where D is the fractal dimension of the structure.
As the fraction dx of crystallites melting between Tm

and Tm + dTm is JQdTm/∆H(Tm), one has the relation:

dx
dTm

=
dx
dr

dr
dTm

=
J∗

Q

∆Hm(Tm)
· (5)

Then using the Thomson law (2) and the distribution law
(4), one obtains the relation between the heat flow J∗

Q =
(JQ)q→0 extrapolated at zero heating rate and the melting
temperature shift ∆Tm:

(J∗
Q) ∼ (∆tm)−(D+1)∆Hm(Tm). (6)

Assuming that the melting (or crystallization) enthalpy is
constant, from the Figure 3b we deduce that the fractal
exponents are D = 1.7 ∓ 0.1 and D = 1.5 ∓ 0.1 respec-
tively for the two Gelsill glasses G25 and G50 in a range
of temperature of 50 ◦C between the beginning of melt-
ing Ton and the end of melting Tend. This must be com-
pared to the fractal dimension, D = 1.75, measured by Li
et al. [16] on similar glass (Vycor) by small angle neutron
scattering, in the scattering range 0.003 < q < 0.02 Å−1.
By both techniques, in the domain of application of the
power law, the signal (neutron scattering intensity and
DSC heat flow) varies over 1.5 decades. By electronic en-
ergy transfer (EET), Even et al. [30] and Arndt et al. [23]
measured the same fractal dimension (in volume), which
is considerably smaller than the value 2.5 for a percola-
tion cluster in three dimensions and close to the backbone
fractal dimension dB = 1.855±0.015 [19]. the three dimen-
sional cluster backbone is obtained by erasing the dangling
branches from the percolation cluster [20].

In fact the exponent is very sensitive to the exact form
of the temperature variations of the melting enthalpy. In
the following table we give the value of the exponent D+1
for the G50 sample when ∆H(Tm) is assumed to be given
by equations (3a, b) or is constant. For these three fits the
correlation factor R of the fit has the same value 0.997.

From this we conclude that the Brun and Kauzmann rela-
tions leads to very different D values. Recently it has been
shown that the melting enthalpy of several liquids present
linear variations with T as expected from the Kauzmann
relation [31]. Therefore the exact value of the fractal expo-
nent of the porous structure, via our method, necessitates
a precise knowledge of the Kauzmann temperature. This is
not the case for water which has a very complex behavior
in the supercooled state [1–4].

Melting enthalpy ∆Hm(Tm) D + 1 R

∆Hm = const. 2.5 0.997
Kauzmann variation Eq. (3b)
TK = −120 ◦C 2.2 0.997
TK = −60 ◦C 2.34 0.997
Brun variation Eq. (3a) 1.7 0.998

5 Conclusion

The DSC thermograms obtained at low heating rate (q <
2 ◦C/min) and by the fractionated method are character-
istic of the fractal nature of the pore network of the dif-
ferent porous glass. In ordered porous glass like P123 AC,
obtained from the mesomorphous phase of copolymers, the
distribution of the pore size is very sharp, until now the
porometry method is the only method which gives an es-
timate of the fluctuation of the pore diameter (±0.5 nm).
In porous glass like Gelsill obtained by sol-gel techniques,
the thermograms are very large. This in principle impedes
drawing off firm conclusions from the classical DSC at low
heating rate. Using the DSC fractionated method we have
shown that the equilibrium melting curve and the melt-
ing curve obtained by the classical DSC at 2 ◦C/min are
very similar. From these two types of ice melting curves,
we measure a fractal exponent D∗, which can be related
to the exponent D of the power law given the pore size
distribution (Eq. (4)). The exponent, D = D∗ − 1, is
found to be dependent on the temperature variation of
the melting enthalpy. If one assumes that ∆H(Tm) fol-
lows the Kauzmann relation (Eq. (3b)) then we find an
exponent D of the order 1.3 which is comparable with
the fractal exponent, 1.7, obtained by others techniques
on similar porous glass obtained by spinodal decomposi-
tion. The fractal exponent D∗ is an intrinsic parameter of
porous glass and it would interesting to compare the D∗
values of different porous materials. It may also be impor-
tant in the future to relate the cross-over temperatures
Ton and Tend to mean dimensions of the fractal structure
of the material. Finally we stress that DSC came out at a
heating rate (2 ◦C/min) is the most rapid and inexpensive
method for determining the pore size distribution and the
fractal exponent of a porous material. In our opinion, it
is also the most accurate technique (see for comparison
Fig. 2 of reference [13], giving the pore size distribution of
similar silica obtained by NMR).
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